Cx43 Mediates TGF- Signaling through Competitive Smads Binding to Microtubules□D □V
نویسندگان
چکیده
Transforming growth factor(TGF) superfamily members play an important role in growth, differentiation, adhesion, apoptosis, and development in many species from insects and worms to vertebrates. Recently, TGFsignaling has been demonstrated to be negatively regulated by microtubules (MTs), which anchor endogenous Smad2/3 to cytosol and also directly interact with connexin43 (Cx43), and the activity of TGFis mediated by Cx43. However, the mechanism underlying the intracellular regulation of TGFactivity by Cx43 remains unknown. Here, we found that the functional link between TGFactivation and Cx43 is mediated by interactions among Smad2/3, MTs, and Cx43. We confirmed that Cx43 competes with Smad2/3 for binding to MTs, which Cx43 specifically induces release of Smad2/3 from MTs and increases phospho-Smad2 and which, as a result, Smad2/3 and Smad4 are accumulated in the nucleus, leading to activation of the transcription of target genes. Consistently, knockdown of the endogenous Cx43 activity with doublestrand RNA (dsRNA) in HL1 cardiomyocytes and Cx43 knockout mice cardiomyocytes consistently show the opposite effect. Our findings demonstrate a novel mechanism for Cx43 positive regulation of TGFfunction.
منابع مشابه
The Delta intracellular domain mediates TGF-β/Activin signaling through binding to Smads and has an important bi-directional function in the Notch–Delta signaling pathway
Delta is a major transmembrane ligand for Notch receptor that mediates numerous cell fate decisions. The Notch signaling pathway has long been thought to be mono-directional, because ligands for Notch were generally believed to be unable to transmit signals into the cells expressing them. However, we showed here that Notch also supplies signals to neighboring mouse neural stem cells (NSCs). To ...
متن کاملSignaling dynamics and embryonic development
During embryonic development, signaling molecules convey positional information within the embryo and direct cells to adopt particular fates. A crucial question is how do the receiving cells of the embryo interpret these signals? While most work on this issue has focused on the biochemical and genetic dissection of the molecular circuitry of signal transduction, understanding signaling as a dyn...
متن کاملPost-translational regulation of TGF-β receptor and Smad signaling.
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. R...
متن کاملDirected Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملLAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...
متن کامل